
J. Fluid Mech. (1967), vol. 27, part 1, pp. 65-79 
Printed in Great Britain 

65 

Hydromagnetic stability of dissipative flow between 
rotating permeable cylinders 

Part 1. Stationary critical modes 

By TIEN SUN CHANGt AND WALTER K. SARTORY 
Oak Ridge National Laboratory, Oak Ridge, Tennessee 

(Received 16 September 1965, and in revised form 12 April 1966) 

The theory of stability of the flow of a viscous, electrically conducting fluid 
between rotating cylinders in the presence of an axial magnetic field is extended 
to the case where the cylinders are permeable and the primary flow includes a 
radial component. Numerical results pertaining to the stationary axially sym- 
metric modes are presented, and the asymptotic stability behaviour for large 
values of the radial Reynolds number is derived. 

1. Introduction 
Recent concepts of gaseous-core nuclear reactors (Kerrebrock & Meghreblian 

196 1) and plasma power-generating devices (Lewellen 1960) require stabilized 
laminar motion of conducting fluids similar to that between permeable, rotating 
cylindrical walls with a large gap width. This paper considers a wide-gap hydro- 
magnetic-stability analysis of such a flow under the influence of an axially applied 
magnetic field. The fluid is assumed to be of uniform density, with finite viscosity 
and conductivity; the walls are assumed to be perfectly conducting. 

Chandrasekhar (1953, 1961), Niblett (1958), Kurzweg (1963), Roberts (1964), 
Chang & Sartory ( 1 9 6 5 ~ )  have discussed in detail the stability results for dissi- 
pative flow between non-permeable, rotating cylinders subject to various types 
of magnetic conditions. Hazlehurst (1963) considered the problem of combined 
rotating and radial flow in the non-magnetic inviscid limit. In  this paper, we shall 
consider the effect of radial flow on the criterion of hydromagnetic stability. The 
asymptotic behaviour of the criterion at  high values of the radial Reynolds 
number will be deduced. Numerical results for perfectly conducting walls will 
also be presented. 

The results reported here apply only to stationary axisymmetric critical modes. 
The possible effect of oscillatory critical modes is also mentioned in $5. The 
stability of oscillatory modes will be considered in more detail in part 2 of this 
series. 

t Presont address : Virginia Polytechnic Institute, Blacksburg, Virginia. 

5 Fluid Mech. 27 



66 T. S. Chang and W .  K.  Xartory 

2. Formulation of the problem 
2.1. The stationary solution 

It is easily verified that the basic hydromagnetic equations admit a stationary 
flow of the form (u, v, w) = (iV'/r, L'/r + M'rRr+l, 0), (2.1) 

with a magnetic field 

where 
(B,, B,, B,) = (0, 0, Bh + B ; r p m R r ) ,  

P, (magnetic Prandtl number) = po vv, 
R, (radial Reynolds number) = N'/u, 

(u, v, w), (B,, B,, B,) are the cylindrical components of the velocity vector and 
magnetic induction field, respectively, r is the radial co-ordinate, u is the kine- 
matic viscosity, p,, is the magnetic permeability, (+ is the electrical conductivity, 
L', M ' ,  N',  B& B; are constants, and the rationalized M.K.S. system of units is 
used. 

Equations (2.1) and (2.2) indicate that the radial-flow component introduces 
a radial variation of the axially applied magnetic field. The constants Bh and B; 
are to be determined by the magnetic boundary conditions. For most fluids of 
practical interest, the magnetic Prandtl number is small ( 2  10-6). Setting 
P, = 0 in (2.2),  we find that the admissible stationary magnetic field becomes 
uniform. We note that this approximation is valid only if P,IR,I 1. Under 
the assumption of P,IR,I < 1, it is easily verified that a uniform magnetic 
field is admissible for perfectly conducting magnetic boundary conditions at  the 
walls and that the magnetic field has the same strength as the externally applied 
field. 

2.2. Normal mode equations 

In  our analysis, we shall consider the admissible stationary flow to be given 
by (2.1) with the magnetic field given by ( O , O ,  Bo), the uniform applied 
axial magnetic field. We consider in this paper the linear stability problem. 
Allowing the stationary solution to deviate slightly, and resolving the perturba- 
tions into axisymmetric normal modes whose time t and axial dependence z are 
of the form exp (ipt + ikx), we obtain, by inserting the perturbed solution into the 
basic hydromagnetic equations and dropping higher-order terms, the following 
set of equations in reduced dimensionless form : 

where yl(x), y2(x) and y3(x), y4(x) are the dimensionless amplitudes of the normal 
mode perturbations of the radial r- and transverse 0-components of the velocity 
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vector and the magnetic induction vector, respectively. The remaining symbols 
in (2.5) are defined as follows: 

(2.6) I a = pr2/V,, p2 = kr2, 

L = L’/(r2&), M = M’rF?+l/V,, N = N’/(r2V,),  
x = r,k2, D = d /dx ,  D ,  = D_+ l/x, 

A (Alfv6n number) = &oJ(p,uo)/Bo, 
R (Reynolds number) = V,r2/v,  

R, (magnetic Reynolds number) = &r2,uocr, 

where V, is a characteristic speed, p is the fluid density, and r2 is the radius of the 
outer cylinder. 

Equations (2.5), when considered with a set of homogeneous velocity and 
magnetic boundary conditions, from the basic eigenvalue problem. We wish to 
decide if, for real p2, it is possible to choose values of B,, such that only the 
eigensolutions with I m a  > 0 are admissible, restricting the normal mode per- 
turbations to be decaying in nature. 

2.3. Boundary conditions 
We assume that the radial velocity through the walls is set externally in such a 
way that it is unaffected by the perturbations within the fluid. Thus, we must 

(2.7) 
have y1 = 0 at x = K , I ,  

where K = r 1 / T 2 ;  rl being the radius of the inner wall. In reality, the velocity 
perturbations may penetrate into the permeable walls. If the walls are sufficiently 
thick and made of a material with a sufficiently small permeability to the passage 
of fluid, however, the magnitude of the disturbance in the walls can be made 
arbitrarily small so that (2.7) is approximately satisfied. The primary radial 
flow can still be maintained by applying a sufficient pressure differential. 

From the non-slip condition, the incompressibility assumption, and (2.7), we 
also deduce that 

Dyl,y2 = 0 at x = K ,  1. (2.8) 

For perfectly conducting walls, the axial component of the electric field 23, 
must vanish at the walls. Applying Ohm’s law and utilizing one of Maxwell’s 
equations with the displacement current neglected according to the basic hydro- 
magnetic assumption, we find that 

In  terms of the dimensionless perturbation amplitude function, we have 

(D+-PmR,/x)y4 = 0 at  x = K ,  1. (2.10) 

In our analysis, the product P, I R,I is assumed to be small. Setting P, I R,I = 0 ,  
the required velocity and magnetic boundary conditions become 

(2.11) 
5-2 
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Because of a reduction of the order of the equations (2.5) for P, = 0,  which is 
assumed in our analysis, (2.11) suEce as the required boundary conditions. 

2.4. Reduced normal mode equations 

We work with the P, = 0 approximation. Assuming that the critical mode 
is due to a secondary stationary flow, we obtain from (3.5) the following set 
of coupled equations for the hydromagnetic stability of the flow between 
permeable walls 

(2.13) 
[{DD+ - Pz" - (Rr/x)  0-1 {OD+ - PO + Pz"H21 W, 

+pi T{( 1/x2) + Axn.} (DD+ - pi) W, = 0, 

[{DD+-Pi- (R , /x )D+}{DD+-p~}+pz"H2]Wq- -XR.~  = 0, 

where 

(2.13) 

The boundary conditions corresponding to (2.12) are 

W,, OW,, D+W,, (DD+-&)W, = 0 a t  x = K, 1. (2.14) 

We note that in the present formulation, the boundary condition for B,, is not 
required. 

3. Stability for large lRrl 
3.1. Dimensionless parameters 

For the primary transverse flow, v(r), we define the angular velocity Q and 
four times the vorticity w as follows: 

Q ( r )  = v/r ,  w( r )  = 2(dv/dr+v/r). (3.1) 

Then, for the type of flow being considered, the product - wQ may be interpreted 
as a measure of the local degree of instability. I n  fact, Rayleigh's (1918) criterion 
for a fluid without viscous or magnetic stabilization states that the flow is unstable 
if - wQ is greater than zero a t  any point in the fluid. In  a viscous fluid, - OJQ must 
reach some positive value before instability occurs. 

By dimensional analysis, we arrive a t  the stability parameter (a Taylor 
number) : 

( - w Q )  d4/v2, (3.2) 

where d is some characteristic length of the system. The product - w Q  is a 
function of r. We use its maximum value 

(-oQ), = max (-@a) 
r,<r<rz 

in the definition. 
(3.3) 
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With a radial Reynolds number of large magnitude,? the primary transverse 
profile v consists of a potential vortex throughout most of the fluid, combined 
with a thin boundary layer at the outlet cylinder. Such a profile should be stable 
except in the boundary layer. This fact, combined with the effect of the radial 
flow on the disturbance itself, causes the secondary flow to be confined largely 
to the boundary layer. The characteristic dimension of the disturbance is then 
proportional to the boundary-layer thickness. 

In terms of the angular velocity, the primary transverse profile is given by 

Q(r )  = L'/r2+ (aM'/(R,+ 2)) rR~.  (3.4) 

The first term on the right corresponds to the potential vortex. The second term 
produces a rapid change of velocity in the boundary layer. The radial position re 
corresponding to the edge of the boundary layer is given by 

r,Rr/(r"), = E ,  (3.5) 

where E is some rather arbitrary positive number less than 1.0, and 

For outward radial flow (R, > O ) ,  we have 

(1 - cY/r2)Rr = E ,  (3.7) 

where 6 = r2 - re  is the boundary-layer thickness. For large magnitudes of R,, 

6 w -  ( r21n~) IRr~  rZ/Rr (RT B 1). (3.8) 

~ ~ r J l R r I  ( 9 1). (3.9) 

Similarly, for inward radial flow (R, < O ) ,  

The expressions r2/Rr, r l / l  R,I are the appropriate characteristic lengths to  
define the dimensionless parameters for outward and inward flow, respectively. 
It is convenient, however, to factor the radial Reynolds number out of the 
resulting definitions to confine the explicit appearance of the radial flow rate to 
a single parameter. We define 

T, = ( -uQ)mr+/v2,  ,4, = kr,, Q1 = crBiri/,u (3.10) 

for inward radial flow, and 

T, = ( -uQ2),r$/u2, p2 = kr2, Q2 = crl3iri/p (3.11) 

for outward radial flow. Thus, we expect that for large [ R,[, the critical Taylor 
number (T, or T,) and the critical dimensionless wave-number (p, or p2) shall be 
proportional to I R,I4 and I R,], respectively. This is demonstrated more rigorously 
in the next section. 

t We recall that our approximation is valid only if P, 1 and P,IR,I < 1. The 
magnitude (R,I can be large despite this restriction. 
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3.2. Asymptotic behaviour for large lR,l 
In  this section we make use of the behaviour of the flow with large values of I R,] 
described in the above section to derive differential equations and boundary 
conditions which govern the asymptotic stability behaviour of the flow as 
I R,l+ 03. Only positive values of R, will be considered, but similar results can be 
obtained when R, is negative. 

Since the disturbance resulting from instability is largely confined to an 
interval r2 - 6 < r < r2 which becomes relatively narrow compared to (r2 - r l )  as 
R, increases, we first map that interval onto (0 , l )  by introducing the new 
independent variable 

r -  (r2- 6) x- ( 1  - 6/r2) - - 
w - 2  

5 =  6 (3.12) 

The precise value of the constant of proportionality in (3.8) is not important 
here. Choosing i t  as unity, we have 

6 = {x- (1 - l/B,)}R,. (3.13) 

Introducing 5 as the independent variable in (2.12), and taking the limit as 
R, --f 00, we obtain 

+/3’2T’{1 +Aexp (5- 1)}(D’2-p’2)  Wi = 0, 
{(D’2-/3’2)2-0’(D‘2-p’2)+/3‘2Q2/R~} W;-{exp (6- l ) }  W ;  = 0, 

(3.14) 

(3.15) 

I {(D’2-p’2)2-  D’(D’2-p’2) +Pf2&2/R;} W;  

1 where D‘ = d/d<, p‘ = P2/R,, T‘ = T/R4,, 

w;(<) = R,-* W ( 4 ,  W X )  = %(a 
The corresponding boundary conditions become 

W;,  D‘ W;, D‘ W;, (D‘ - p‘2) W; = 0 at 5 = 1, (3.16) 

and W;,Wi+O as 53-03. (3.17) 

The term Q2/R: has been retained in (3.14) because its treatment depends 
on how the limit R, -+ 03 is carried out. If the limit R,+ 03 is carried out by letting 
the viscosity ,u+ 0, then Q,lRF remains constant and should be retained in the 
equations. 

We shall be mainly interested, however, in the case where R, is made large by 
increasing the radial flow rate with the other dimensional quantities held con- 
stant. Then Q2 remains constant, while Q2/R,2+0 and can be dropped from the 
equations. The resulting critical-value problem depends only on A. If it  has a 
solution (p’, T’), then we obtain the asymptotic stability behaviour 

T+R,4T’, P2+R,P’ as R,+m (3.18) 

independently of Qz and K .  Making use of the definitions of T and T,, we find 
that they must have the same asymptotic behaviour; hence, as R,+co, we 

(3.19) 
obtain 

with the constants of proportionality again independent of Q2 and K .  

T2~c P 2 . c  Rr, 
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If the terms involving Q,/R,2 are dropped from (3.14), the problem becomes 
an ordinary hydrodynamic one; and the order of the equations can be reduced 
to six by introducing the new variable 

w; = ( O ’ Z - P ’ Z )  w;. (3.20) 
We then have 

(3.21) 
{ (o f2 -p ’2 )~-or (O ’~-p ’~) }  w; 

+Pf2T’{1+hexp(<-1)}W; = 0, 

{(D2 -p’,) - 0’) Wg - {exp (5- 1)) W i  = 0, 

with the boundary conditions 

W;, OW;, WL = 0 at < =  1, 
W;, Wg+O as <+--GO. 

(3.22) 

For the case of a stationary wall, h = - 1.0, (3.21) and (3.22) are identical 
to the equations governing the Taylor-Gortler instability of an asymptotic 
suction boundary layer on a curved surface, where (1 - 5) is the distance from 
the surface.? In  fact, the case h + - 1.0 can be interpreted as applying to a 
suction boundary on a tangentially moving curved surface, so that there is no 
real difference between the problems. 

The terms of (3.21) involving first and third derivatives account for the effect 
of the primary flow normal to the wall, or suction flow, on the disturbance. 
They are applicable to the suction boundary layer as well as to the present 
problem. The authors are aware of no published results for the Taylor-Gortler 
problem which include the effect of suction on the disturbance. Hammerlin 
(1955), however, has considered the stability of an exponential boundary-layer 
profile without including the suction terms. A comparison might be of interest, 
if only to indicate the effect of suction. 

In terms of the usual Gortler parameter based on momentum thickness of the 
boundary layer,$ extrapolation of the results of this paper to R, = -GO leads to 
the critical value 1.17, while Hammerlin gives 0.288. 

4. Discussion of results 
The eigenvalue problem given by (2.12) and (2.14) has been solved numerically$ 

for the case of a stationary outer wall, i.e. h = - 1.0. We consider the cases of 
inward and outward flow separately. 

4.1. Outward radialJlow (R, > 0) 

In  figure 1, we present some of the typical curves showing the critical Taylor 
number T, as a function of the radial Reynolds number for several values of the 
radius ratio K and Q,. When the asymptotic form is best established, at small 

t The similarity between (3.14) and the equations governing the stability of an 
ssymptotic suction boundary layer was pointed out to the authors by one of the referees. 

$ See Hlimmerlin (1955) for the definition of this parameter. 
8 See appendix for a brief description of the numerical procedure. 
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values of K and Q,, the limiting slope (AlogT,/AlogR,) for large R, ( N lo2)? 
is + 4 as expected. 

As the radial Reynolds number increases, the critical Taylor number loses its 
dependence on K ,  again as expected. 

When Q, is large ( 7 lO4),  the change in T, caused by changes in either R, or K 

decreases greatly. The asymptote for large R, is probably the same as when 
Q2 = 0, but it is approached much more slowly and cannot be determined with 
certainty from the present calculations. 
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FIGURE 1. Variation of T ,  with R, for outward radial flow, outside wall stationary. 
f a )  A = -1.0, Q, = 0 ;  (5) A = -1.0, Q,  = 100; (c) A = 1.0, Q, = 103; (d )  A = -1.0, 
g3 = 104. 

The critical wave-number p,, as a function of R,, for Q, = 0, is shown in 
figure 2 (a). Again, the curves become independent of K when R, is large and the 
limiting slope + 1 is reached. When Q, is large, the curves for large values of K 

(not shown) have the same characteristics as those for Q, = 0 except that the 
limiting slope of + 1 is not yet reached in the present range of calculations. 

For Q, = lo3, 104, and small values of K ,  discontinuities occur in the wave- 
number curves. One such curve (&, = 104, K = 0.25) is shown in figure 2 (b) .  The 
discontinuities occurwhen a change in the relative stability of two modes produces 
a sudden transition of the critical disturbance from one mode to another. A dis- 
continuity in the wave-number curve is accompanied by an abrupt change in 

t With P, = or the conditions P,IR,I < 1 should still be satisfied. 
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the slope of the critical Taylor number curve. The discontinuities are believed to 
be a result of the restriction of these calculations to stationary critical modes. 
Oscillatory modes may also occur as discussed in 9 5 of this paper. 
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FIGURE 2. Variation of p2 with R, for outward radial flow, outside wall stationary. 
(a )  h = -1.0, Qz = 0 ;  ( b )  h = -1.0, Qz = lo4. 

4.2. Inward radial$ow (R, < 0) 
The critical Taylor number curves of TI versus I R,I for inward radial flow are 
given in figure 3 for several values of K and Q1 = 0,103. The qualitative 
behaviour is similar to that for outward flow. When 1 R,I is large, the value of 
A log TJA log I R, I again approaches + 4, and the curves become independent of K .  

The corresponding critical wave-numbers for Q1 = 0 are shown in figure 4 (a). 
The limiting value of the slope for large IB,I is about + 1 as expected. Similar 
results are obtained for Q1 .I. 0. No discontinuities occur in these curves, a t  least 
up to the largest Q1 considered. The curves for Q1 = lo3, K = 0-25,0.4, however, 
show a rather sharp although continuous decrease in critical wave-number for 
1 < IB,I < 2 as shown in figure 4(b). 

4.3. CouetteJlow (R, = 0) 
When R, = 0, the present analysis reduces to  that for the stability of dissipative 
Couette flow under an axial magnetic field. Our results for this portion of the 
analysis have been reported elsewhere (Chang & Sartory 1965a). For the hydro- 
dynamic case (Q2 = 0 ) ,  our results agreed with the experimental results of Taylor 
(1923), and the existing analysis of Taylor (19231, Chandrasekhar (1961), 
Walowit, Tsao & DiPrima (1964). 

For the hydromagnetic case (Q2 + 0) ,  our results for perfectly conducting walls 
agreed quite well with the calculated results of Chandrasekhar (1961) for Q2 2 lo3. 
Due to the short-circuiting of current through the perfectly conducting walls, the 
stationary convective wave cells did not elongate indefinitely with the increase 
of Q2, however; and a viscosity-independent asymptote of Toc Qi as Q2+m was 
observed. 

Actually, a complicated phenomenon of transition to oscillatory modes of 
instability occurs a t  high values of Q2 for perfectly conducting walls. When the 
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oscillatory modes are admitted, the convective cells elongate with Q2 as expected 
and the viscosity-dependent asymptote of Tcc Q2 as predicted by Chandrasekhar 
is obtained. A detailed description of this behaviour was given by Chang & Xartory - 
(19653) 
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FIGURE 3. Variation of Tl with R, for inward radial flow, outside wall stationary. 
(a )  h = - 1.0, Q, = 0; (b) h = - 1.0, Q1 = 103. 

100 0 
8 
6 

4 
30 0 

2 

10 0 
&i 

I 
4 

3 0  

1 0  0 1  0 3  2i 10 30 100 300 1000 

Bl 
(a) 

100 0 
8 
6 
4 

30 0 
2 

10 0 
8 
6 

2 

10 
8 
6 
4 

03 
2 

01 
0 1  03 10 30 100 300 1000 

y 3: 

I - 

B, 
( b )  

FIGURE 4. Variation of p1 with R, for inward radial flow, outside wall stationary. 
(a)  A = - 1.0, = 0; ( b )  A = - 1.0, = 103. 

5. Oscillatory disturbances 
In this paper, calculations are restricted to stability with respect to stationary 

axisymmetric disturbances. As described in tj 4.3, for the case of hydromagnetic 
stability of Couette flow between non-permeable perfectly conducting cylinders, 
the authors have reported earlier (1965b) that oscillatory modes appear and 
become more critical than stationary modes for large values of Q2. Since the 
present results reduce to the non-permeable wall case as R, -+ 0, it is certainly to 
be expected that oscillatory critical disturbances will also occur with permeable 
walls, at least when Q1 (or Q,) is large and IB,I is small. While the effect of radial 
flow on the oscillatory modes is not yet completely understood, preliminary 
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calculations indicate that as IR,I +co, the stationary modes reported in this 
paper are more critical. 

If the results of this paper are extended to include oscillatory as well as 
stationary axisymmetric critical modes, it  is expected that: 

(a)  The I R,I + co asymptotic behaviour will not change. 
(b)  The graphs of critical Taylor and wave-number for small values of Q, or 

Qz will not change. 
(c )  In  the graphs of Taylor and wave-number for large values of Q1 or Q2, that 

part of the curves corresponding to small IB,I will be altered. In  particular, the 
critical Taylor number will be lowered, and the complicated series of discon- 
tinuities shown in figure 2(b) ,  for example, will be altered or eliminated. 

The stability of oscillatory disturbances will be considered in detail in part 2 
of this series. 

6. Conclusions 
( a )  The asymptotic stability analysis indicates that as IR,I becomes large, the 

critical Taylor number T, (or T,) becomes proportional to R;f and the critical wave- 
number p, (or Pz) becomes proportional to R,. 

The asymptotes are independent of K. 

If the limit JR,[ +co is taken with a constant value of Q, (or Qz) (this corre- 
sponds to increasing the radial flow rate while holding the other dimensional 
parameters constant) then the asymptotes are also independent of Q, (or Q,).  

(b)  Results obtained from numerical solution of the stability equations, for 
all values of Q, (or Q,) considered, indicate that the critical Taylor and wave- 
numbers become independent of K for large values of I R,I as expected from the 
asymptotic analysis. 

Numerical results also verify the expected asymptotic behaviour T, (or T,)K R:, 
(or p2)cc R,, when &,(or Q2) is small. As Q, (or Q,) is increased, the asymptote is 

approached more slowly. It is believed that the same asymptotes apply also for 
large values of Q, (or Q2) ,  but the range of R, covered in the calculations is not 
sufficient for verification.t 

It is possible to represent the Taylor number for critical stationary modes as 
a function of R,, Q ,  and K on a single three-dimensional graph. We define 

with d, = (eRrrz+e-Rrr , ) / (eRr+e-Rr) .  (6.2) 

Since d, +rl (or r2) as R,+ -co (or +a), the asymptotic behaviour of Tyc for 

(6.3) 
large lB,l must be T*cc IR,14 as lR,l-+co. 

We now map the critical values of Tyc as a function of R, and Qyc for each K. Since 
the critical T, becomes independent of K for large values of IR,I or Q*, the 
resulting graph must have a dish-like shape as shown qualitatively in figure 5. 

(c) With outward radial flow, when Qz is large and R, is small, a series of dis- 
continuities occurs in the graphs of critical wave-number. 

t However, note that if &, (or Q2) is VQV large, the value of IR, I required to  reach the 
asymptote might be so great that the restriction PmIRr\ Q 1 is violated. 
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With inward radial flow, when Q1 is large and I R,I is small, a rather sharp, but 
continuous decrease in wave-number occurs with 1 d I R,J < 2 .  

(d) It is known from earlier work (Chang & Sartory 1965b) on the hydro- 
magnetic stability of Couette flow between conducting non-permeable walls, that 

FIGURE 5. Qualitative sketch of T* as a function of R, and Q+ for 
stationary critical modes, outside wall stationary. 

for large values of the Hartman number, oscillatory modes are more unstable 
than the stationary disturbances considered in this paper. This result will 
certainly apply also to flow between permeable walls when the radial Reynolds 
number is small, but large values of [ R,I are expected to inhibit the oscillatory 
disturbances. Of the conclusions listed above, only ( c )  should change if the 
present results are extended to include oscillatory as well as stationary axi- 
symmetric critical disturbances. 

This research was sponsored by the U.S. Atomic Energy Commission under 
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Note added in proof. The authors are grateful to  Drs S. K. Datta and E. R.  
Krueger for a preprint of their paper, On the stability of Couette flow with suction 
and injection. Their narrow-gap, nonmagnetic results seem to be consistent with 
the wide-gap results given in this paper for B, -+ 0. 
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Appendix Numerical method 
The numerical procedure used to obtain the results of this paper is essentially 
the same as that described by the authors in an earlier paper (Chang & Sartory 
1965~). The interval K < x < 1 is divided into a mesh of equal subintervals, and 
the differential equations and boundary conditions are replaced by a homo- 
geneous system of linear algebraic equations by approximating the derivatives 
with appropriate finite-difference expressions. The condition that the resulting 
equations have a solution is that the determinant of their coefficients vanishes. 
The determinant is evaluated numerically by Gaussian elimination. The equation 

det (P2, T )  = 0 (A 1) 
defines implicitly the curve of neutral stability. At a (relative) minimum of the 
neutral curve 

The simultaneous equations (A 1)  and (A2) are solved by Newton’s method, 
again approximating the required derivatives of the determinant by appropriate 
difference expressions, e.g. 

(A 3) 
a det (Pa ,  T )  det(P2P + 4, T}-  det{P2(1 -A),  T )  

2PzA aP2 
N 

To insure adequate accuracy of these approximations, the increment A is 
decreased by 50 yo in each of the final steps of Newton’s method. Convergence of 
Newton’s method is assumed when the values of both P2 and T obtained in two 
successive steps differ by less than 0.01 yo.? 

The entire calculation outlined above is then repeated using twice the number 
of mesh points for the approximation of the differential equations. The number of 
mesh points is assumed to be adequate when the values of P2 and T obtained with 
two successive mesh sizes differ by less than 0.5 %. 

The starting values of Pa and T required by Newton’s method are usually 
supplied by extrapolation of known results. Occasionally, however, graphs of the 
determinant or of the Taylor number for neutral stability versus wave-number 
are required. The neutral Taylor number, when needed, is calculated essentially 
as described above, except that equation (A2) is not used, and P2 is treated as 
a parameter. 

It was found during the calculations that the neutral curves of T versus Pa, at 
large values of Q 2 ,  possess several relative minima, any one of which can be the 
absolute minimum or critical point. Such a neutral curve is shown in figure 6. 
As the radial Reynolds number is varied, the minima are affected by differing 
amounts, and transitions between minima occur, leading to abrupt changes in 
critical wave-number as shown in figure 2 (b). 

Figure 6 shows the neutral values of (T2,P2) for the first ten normal modes. 
The curves for higher modes resemble the two curves to the left of the graph, and 

t Occasionally, when this criterion is not met after six steps of Newton’s method, a 
weaker acceptance criterion of 0 1  yo is substituted. 
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lie above them. If the value of Q2 were increased, the two curves to the left would 
close a t  some small value of the wave-number to form a single loop, and further 
increases in Q2 would cause the loop to recede to the right until it resembled the 
other four loops shown. Then the minimum of the next mode would be exposed, 
and would have to be included in the calculation. 

T2 
FIGURE 6. Curves of T, versus p2 for stationary behaviour of the first ten normal modes. 

A = - 1.0, Q~ = 104, K = 0.25, R, = 2.5.  

The calculation procedure which has been described so far is not capable of 
following transitions between the competing minima illustrated in figure 6. To 
detect transitions, the following checking process is used. 

The function det (p2, T) is normalized so that det (p2, 0 )  > 0. Then, referring 
to figure 6, the value of the determinant is negative within the finger-like loops 
on the right and in the strip between the two curves to the left of the graph, and 
positive elsewhere. After a relative critical point (relative minimum on the T 
versus p2 curve) is calculated, the resulting Taylor number is decremented by 
1 yo and held constant while the determinant is evaluated at a series of 50 or 100 
values of B2 distributed over the interval in which minima are anticipated, say 
1.0 to 100. If a negative value of the determinant is detected, indicating that 
another loop of the curve extends below the calculated relative critical point, 
a search is conducted for the new minimum. The value of the radial Reynolds 
number at which a transition occurs is given only approximately by the checking 
process, and a graph of Taylor number versus radial Reynolds number for the 
two minima in question is used to determine it more precisely. 

To provide a quantitative check on the present calculations, we include in 
table 1 a comparison of some results obtained by the present method with results 
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given in table 1 of Walowit, Tsao & DiPrima (1964). In  the nomenclature of the 
present paper, they tabulate ( 1  - K ) P ~  and Tz( 1 - K ) * K ~  for several values of K .  

The greatest difference is about 1 yo and occurs at the smallest value of K. 

Walowit, Tsao & DiPrima 
Present work (1964) - & 

0.8 3.14 2551-7 3.13 2553.4 
0.6 3.148 1851.5 3-15 1851.5 
0.4 3- 186 1279.2 3.17 1279-1 
0.1 3.339 645.6 3.30 650.0 

TABLE 1. Comparison of critical parameters; no radial flow, no magnetic field, 
stationary outer wall. 

K ( i - ~ ) p ,  ( ~ - K ) ~ T &  ( l - ~ ) p ,  (~-KK)~T& 
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